
ztd.idk
Release 0.0.0

ThePhD & Shepherd's Oasis, LLC

Aug 01, 2022

CONTENTS:

1 Who Is This Library For? 3

2 Indices & Search 37

Index 39

i

ii

ztd.idk, Release 0.0.0

This is the IDK (Industrial Development Kit) library, part of the ZTD collection. The IDK is a small, useful toolbox
of supplementary things, including

• The ztd.idk core library:

– A small collection of type traits, optimizations, and other semi-niche utilities for accelerating development.

– Small, header-only.

– CMake: ztd::idk (also pulls in ztd::tag_invoke and ztd::version)

• The ztd.tag_invoke customization point library:

– Modeled after C++ proposal p1895.

– Makes for a single extension point to be written, tag_invoke(...), whose first argument is the name of
the extension point to be hooking into. E.g., tag_invoke(tag_t<lua_push>, ...).

– Tiny, header-only.

– CMake: ztd::tag_invoke (also pulls in ztd::version)

• The ztd.version configuration macro library:

– A formalization of the principles found in this post and this post.

– Mistake-resistant configuration and default-on/off vs. deliberate on/off detection.

– Infinitesimally tiny, header-only.

– CMake: ztd::version

CONTENTS: 1

https://wg21.link/p1895

ztd.idk, Release 0.0.0

2 CONTENTS:

CHAPTER

ONE

WHO IS THIS LIBRARY FOR?

Ideally, no one.

1.1 Users in the Wild

I mean. . . . Should you really be using this directly. . . ?

1.2 Glossary of Terms & Definitions

Occasionally, we may need to use precise language to describe what we want. This contains a list of definitions that can
be linked to from the documentation to help describe key concepts that are useful for the explication of the concepts
and ideas found in this documentation.

¯_()_/¯ So far? There’s none.

1.3 Configuring the Library

• ZTD_DEBUG:
– Signals to ztd.idk and downstream users that this should be considered a “debugging” build.

– Affects many things, such as error printouts, warnings given, and more.

– Turned on by default if compiler/platform-specific debug macros are detected, or NDEBUG is not defined
by the compiler/library.

Warning: This isn’t finished yet! Come check back by the next major or minor version update.

3

ztd.idk, Release 0.0.0

1.4 API Reference

This is simply a listing of all the available pages containing various APIs, or links to pages that link to more API
documentation.

1.4.1 C++ APIs

Alignment

This API is identical to the one defined in the C APIs, which can be found here.

assertions

This API is identical to the one defined in the C APIs, which can be found here.

char(8/16/32)_t

This makes char(8/16/32)_t available under the type definitions of ztd::uchar(8/16/32)_t. This allows their
use uniformly in C and C++, regardless of whether or not the type definition is present in the proper place.

using ztd::uchar8_t = ZTD_CHAR8_T_I_
An alias to a unsigned representation of an 8-bit (or greater) code unit type.

Remark
This will be a type alias for the type given in the ZTD_CHAR8_T define if it is defined by the user. Otherwise, it
will be a type alias for char8_t if present. If neither are available, it will alias unsigned char for the type.

using ztd::uchar16_t = char16_t
An alias to a unsigned representation of an 16-bit (or greater) code unit type.

Remark
This alias will always point to char16_t, because C++ has this as a built-in type.

using ztd::uchar32_t = char32_t
An alias to a unsigned representation of an 32-bit (or greater) code unit type.

Remark
This alias will always point to char32_t, because C++ has this as a built-in type.

4 Chapter 1. Who Is This Library For?

ztd.idk, Release 0.0.0

ebco

ebco is a way to gain the benefits of what is called the Empty Base Class Optimization (EBCO). It is meant to be
used as a base class with the type and tag used to identify the member variable is replacing. Mostly superseded by
[[no_unique_address]], except on one compiler that decided to make a Fractally Bad Decision™.

template<typename _Type, ::std::size_t _Tag = 0, typename = void>

class ebco
A class for optimizing the amount of space a certain member of type _Type might use.

Remark
The only reason this class continues to be necessary is because of Microsoft Visual C++. Every other compiler
respects the new C++20 attribute [[no_unique_address]] - it is only Microsoft that explicitly decided that our
opt-in indication that we care more about the object’s size is not important.

Template Parameters
• _Type – The type of the member.

• _Tag – A differentiating tag to separate this member from others when there are multiple
bases of the same _Type.

Public Functions

ebco() = default
Default construction.

ebco(const ebco&) = default
Copy construction.

ebco(ebco&&) = default
Move construction.

ebco &operator=(const ebco&) = default
Copy assignment operator.

ebco &operator=(ebco&&) = default
Move assignment operator.

inline constexpr ebco(const _Type &__value) noexcept(::std::is_nothrow_copy_constructible_v<_Type>)
Copies the object into storage.

inline constexpr ebco(_Type &&__value) noexcept(::std::is_nothrow_move_constructible_v<_Type>)
Moves the object into storage.

inline constexpr ebco &operator=(const _Type &__value)
noexcept(::std::is_nothrow_copy_assignable_v<_Type>)

Copy assigns into the previous object into storage.

inline constexpr ebco &operator=(_Type &&__value)
noexcept(::std::is_nothrow_move_assignable_v<_Type>)

Move assigns into the previous object into storage.

1.4. API Reference 5

ztd.idk, Release 0.0.0

template<typename _Arg, typename ..._Args, typename =
::std::enable_if_t<!::std::is_same_v<::std::remove_reference_t<::std::remove_cv_t<_Arg>>, ebco> &&
!::std::is_same_v<::std::remove_reference_t<::std::remove_cv_t<_Arg>>, _Type>>>
inline constexpr ebco(_Arg &&__arg, _Args&&... __args)

noexcept(::std::is_nothrow_constructible_v<_Type, _Arg, _Args...>)
Constructs the object in storage from the given arguments.

inline constexpr _Type &get_value() & noexcept
Gets the wrapped value.

inline constexpr _Type const &get_value() const & noexcept
Gets the wrapped value.

inline constexpr _Type &&get_value() && noexcept
Gets the wrapped value.

endian

The endian enumeration is a very simple enum class used to communicate what kind of byte ordering certain parts
of the library should use to interpret incoming byte sequences. The C version uses macros and can be found here.

The values are ztd::endian::little, ztd::endian::big, or ztd::endian::native.

using ztd::endian = ::std::endian
An endian enumeration.

Remark
It may include little, big, or native values. The native value can be the same as the little or big values, but if on
a middle-endian machine it may be an implementation-defined “middle endian” value that is not equal to either
little or big (as on the PDP-11). We don’t expect many relevant architectures to be using middle-endian, though.

span

A polyfill (“shim”, fill-in-layer) meant to emulate std::span.

Available in the namespace uner the name ztd::span.

tag_invoke

tag_invoke is a way of doing customization points in Modern C++ that is meant to be easier to work with and
less hassle for end-users. It follows the paper P1895. A presentation for tag_invoke that covers its uses and its
improvements over the status quo by Gašper Ažman can be found here.

Warning: doxygenvariable: Cannot find variable “ztd::tag_invoke” in doxygen xml output for project “ztd.idk”
from directory: /home/docs/checkouts/readthedocs.org/user_builds/ztdidk/checkouts/latest/documentation/source/_build/cmake-
build/documentation/doxygen/xml

template<typename _Tag, typename ..._Args>

6 Chapter 1. Who Is This Library For?

https://en.cppreference.com/w/cpp/container/span
https://wg21.link/p1895
https://www.youtube.com/watch?v=T_bijOA1jts

ztd.idk, Release 0.0.0

class is_tag_invocable : public std::is_invocable<decltype(tag_invoke), _Tag, _Args...>
Whether or not a given tag type and its arguments are tag invocable.

template<typename _Tag, typename ..._Args>

constexpr bool ztd::is_tag_invocable_v = is_tag_invocable<_Tag, _Args...>::value
A _v alias for ztd::is_tag_invocable.

template<typename _Tag, typename ..._Args>

class is_nothrow_tag_invocable : public __is_nothrow_tag_invocable_i<is_tag_invocable_v<_Tag, _Args...>,
_Tag, _Args...>

Whether or not a given tag type and its arguments are both invocable and marked as a noexcept invocation.

template<typename _Tag, typename ..._Args>

constexpr bool ztd::is_nothrow_tag_invocable_v = is_nothrow_tag_invocable<_Tag, _Args...>::value
A _v alias for ztd::is_nothrow_tag_invocable.

using ztd::tag_invoke_result = ::std::invoke_result<decltype(tag_invoke), _Tag, _Args...>
A class representing the type that results from a tag invocation.

using ztd::tag_invoke_result_t = typename tag_invoke_result<_Tag, _Args...>::type
A _t alias that gives the actual type that results from a tag invocation.

uninit

The ztd::uninit type is for holding a type that may be initialized by-default into an uninitialized state (e.g., for
C-style arrays that are a member of a class).

template<typename _Type>

class uninit
A class for holding a value inside of an unnamed union which is composed of two objects, one of char and one
of _Type.

Public Functions

inline constexpr uninit()
Constructs an empty placeholder.

template<typename ..._Args>
inline constexpr uninit(::std::in_place_t, _Args&&... __args)

Constructs the value from the given arguments.

Parameters __args – [in] The arguments to construct value with.

inline ~uninit()
An empty destructor. Required, as there is a union object present.

1.4. API Reference 7

ztd.idk, Release 0.0.0

Public Members

char placeholder
Placeholder empty value for default / empty initialization, esp. with arrays.

_Type value
Actual value.

Friends

inline friend _Type &unwrap(uninit &__wrapped_value) noexcept
Extension point for returning the value inside of this uninitialized type.

inline friend const _Type &unwrap(const uninit &__wrapped_value) noexcept
Extension point for returning the value inside of this uninitialized type.

inline friend _Type &&unwrap(uninit &&__wrapped_value) noexcept
Extension point for returning the value inside of this uninitialized type.

unwrap / unwrap_iterator

Utility extension points to transform a potentially wrapped value (like ztd::uninit) so that the “real” value an be used.
Often used in the guts of generic code rather than anywhere truly important, but a useful little utility nonetheless.

Warning: doxygenvariable: Cannot find variable “ztd::unwrap_iterator” in doxygen xml output for project
“ztd.idk” from directory: /home/docs/checkouts/readthedocs.org/user_builds/ztdidk/checkouts/latest/documentation/source/_build/cmake-
build/documentation/doxygen/xml

Warning: doxygenvariable: Cannot find variable “ztd::unwrap” in doxygen xml output for project “ztd.idk” from
directory: /home/docs/checkouts/readthedocs.org/user_builds/ztdidk/checkouts/latest/documentation/source/_build/cmake-
build/documentation/doxygen/xml

detection

The “detection idiom” is a means to provide “detectors” (code from a using type definition whose definition has an
expression wrapped in decltype(...)) that can tell if a given expression compiles.

template<typename _Default, typename _Void, template<typename...> typename _Op, typename ..._Args>

class detector
A class to be used for the “detection idiom”. Provides value_t for the true_type/false_type dichotomy and
provides type for the detected type.

Remark
This is more efficient and useful at the member declarations level, especially when needing to dispatch to func-
tionality that may or may not exist in wrapped or base classes.

8 Chapter 1. Who Is This Library For?

ztd.idk, Release 0.0.0

Public Types

using value_t = ::std::false_type
The type that provides the value static member variable.

using type = _Default
The type chosen from the detection operation.

class nonesuch
A class specifically for the case where the detection idiom cannot detect the requirements.

using ztd::is_detected = typename detector<nonesuch, void, _Op, _Args...>::value_t
A commonly-used alias for getting a true_type or false_type indicating whether the operation was success-
ful.

template<template<typename...> typename _Op, typename ..._Args>

constexpr bool ztd::is_detected_v = is_detected<_Op, _Args...>::value
A _v shortcut for ztd::is_detected.

using ztd::detected_t = typename detector<nonesuch, void, _Op, _Args...>::type
A _t shortcut for using the ztd::detector to provide either ztd::nonsuch or the given type as yielded by the
operation applied to the arguments.

using ztd::detected_or = detector<_Default, void, _Op, _Args...>
A shortcut for using the ztd::detector to provide either _Default or the given type as yielded by the operation
applied to the arguments.

is_character

The is_character detects the typical “char” types in C++ (char, signed char, char8_t, char16_t, and
char32_t).

template<typename _Type>

class is_character : public std::integral_constant<bool, ::std::is_same_v<_Type, char> || ::std::is_same_v<_Type,
wchar_t> || ::std::is_same_v<_Type, unsigned char> || ::std::is_same_v<_Type, signed char> ||
::std::is_same_v<_Type, char16_t> || ::std::is_same_v<_Type, char32_t>>

Checks if the given type is one of the plain character types.

template<typename _Type>

constexpr bool ztd::is_character_v = is_character<_Type>::value
An _v alias for ztd::is_character.

1.4. API Reference 9

ztd.idk, Release 0.0.0

type_identity

The type_identity and related type_identity_t are useful in controlling function template declarations where
the arguments need to have their types prevent from being mutated or changed in undesirable ways. Otherwise, it does
exactly what it says on the tin: launders the given type parameter into the ::type aspect.

template<typename _Type>

class type_identity
A type for giving the exact same type out as was put in.

using ztd::type_identity_t = typename type_identity<_Type>::type
A _t typename alias for ztd::type_identity.

1.4.2 C APIs

Alignment

These APIs aid in aligning pointers and types. They are typically available for both C and C++.

ZTD_ASSUME_ALIGNED(_ALIGNMENT, ...)
Returns a pointer suitable-aligned for _ALIGNMENT.

Remark
This function does NOT align the pointer, just marks it as such. This uses builtins or other tricks depending on
the compiler. It can trigger Undefined Behavior if it is not properly checked and protected against, so make sure
the pointer is properly aligned.

Parameters
• _ALIGNMENT – [in] An integer constant expression indicating the alignment of the pointer

value.

• ... – [in] The pointer to assume alignment of.

Returns A pointer (assumed to be) suitably-aligned to _ALIGNMENT.

Assertions

This API defines 2 assertion macros. One is named ZTD_ASSERT, and the other is named ZTD_ASSERT_MESSAGE. The
first takes only one or more conditional tokens, the second takes a mandatory message token as the first parameter, and
then one or more conditional parameters.

The user can override the behavior of each of these by defining both of ZTD_ASSERT_USER and
ZTD_ASSERT_MESSAGE_USER.

When debug mode is detected and user-defined assertions are not macro-defined, then a default implementation is used.
Typically, these:

• check the condition, and if it is true:

– print (std::cerr or fprintf(stderr, ...), depending on the language) a message including line, file,
etc.; and,

10 Chapter 1. Who Is This Library For?

ztd.idk, Release 0.0.0

– exit the program cleanly (std::terminate or exit, depending on the language)

Note that no side-effects should ever go into assertions, because assertions can be compiled to do nothing.

ZTD_ASSERT(...)
A macro for asserting over a given (set of) conditions.

Remark
The conditions must result in a value that is convertible to a boolean in a boolean context. This macro does
nothing when ZTD_DEBUG is not detected. (It will still (void)-cast the used items, to prevent unused warnings.) If
the condition is not reached, this function will perform either a user-defined action or terminate/exit (not abort).

Parameters
• ... – [in] The conditional expressions to check against.

ZTD_ASSERT_MESSAGE(_MESSAGE, ...)
A macro for asserting over a given (set of) conditions.

Remark
The conditions must result in a value that is convertible to a boolean in a boolean context. This macro does
nothing when ZTD_DEBUG is not detected. (It will still (void)-cast the used items, to prevent unused warnings.) If
the condition is not reached, this function will perform either a user-defined action or terminate/exit (not abort).

Parameters
• _MESSAGE – [in] The message to pass through.

• ... – [in] The conditional expressions to check against.

Bit Intrinsics

Bit intrinsics are functions that map as closely as possible to behavior and functionality in ISAs without needing to deal
with the undefined behavior and non-portability of said architectures. It provides vital functionality that can greatly
speed up work on specific kinds of bit operations. The provided intrinsics here are a large subset of the most efficient
operations, offered in various flavors for ease-of-use.

“Leading” refers to the most significant bit in a given value. This is the “left side” of an integer when writing source
code, such that 0b10 has a most significant bit of 1. “Trailing” refers to the least significant bit in a given value. This
is the “left side” of an integer when writing source code, such that 0b10 has a least significant bit of 0.

ztdc_count_ones(...)
Counts the number of ones in a given unsigned integer.

Parameters
• ... – [in] The input value.

Returns An int (or suitably large signed integer type) with the count.

ztdc_count_zeros(...)
Counts the number of zeros in a given unsigned integer.

1.4. API Reference 11

ztd.idk, Release 0.0.0

Parameters
• ... – [in] The input value.

Returns An int (or suitably large signed integer type) with the count.

ztdc_count_leading_zeros(...)
Counts the number of leading zeros in a given unsigned integer.

Parameters
• ... – [in] The input value.

Returns An int (or suitably large signed integer type) with the count.

ztdc_count_trailing_zeros(...)
Counts the number of trailing zeros in a given unsigned integer.

Parameters
• ... – [in] The input value.

Returns An int (or suitably large signed integer type) with the count.

ztdc_count_leading_ones(...)
Counts the number of leading ones in a given unsigned integer.

Parameters
• ... – [in] The input value.

Returns An int (or suitably large signed integer type) with the count.

ztdc_count_trailing_ones(...)
Counts the number of trailing ones in a given unsigned integer.

Parameters
• ... – [in] The input value.

Returns An int (or suitably large signed integer type) with the count.

ztdc_first_leading_zero(...)
Finds the first trailing zero in a given unsigned integer value.

Parameters
• ... – [in] The input value.

Returns If the bit is not found, returns 0. Otherwise, returns an int (or suitably large enough signed
integer) indicating the index of the found bit, plus one.

ztdc_first_trailing_zero(...)
Finds the first trailing zero in a given unsigned integer value.

Parameters
• ... – [in] The input value.

Returns If the bit is not found, returns 0. Otherwise, returns an int (or suitably large enough signed
integer) indicating the index of the found bit, plus one.

ztdc_first_leading_one(...)
Finds the first leading one in a given unsigned integer value.

Parameters
• ... – [in] The input value.

12 Chapter 1. Who Is This Library For?

ztd.idk, Release 0.0.0

Returns If the bit is not found, returns 0. Otherwise, returns an int (or suitably large enough signed
integer) indicating the index of the found bit, plus one.

ztdc_first_trailing_one(...)
Finds the first trailing one in a given unsigned integer value.

Parameters
• ... – [in] The input value.

Returns If the bit is not found, returns 0. Otherwise, returns an int (or suitably large enough signed
integer) indicating the index of the found bit, plus one.

ztdc_rotate_left(_VALUE, ...)
Performs a cyclical shift left.

Remark
If the rotation value is negative, calls ztdc_rotate_right with the negated modulus of the rotation.

Parameters
• _VALUE – [in] The value to perform the cyclical shift left.

• ... – [in] The rotation value.

ztdc_rotate_right(_VALUE, ...)
Performs a cyclical shift right.

Remark
If the rotation value is negative, calls ztdc_rotate_right with the negated modulus of the rotation.

Parameters
• _VALUE – [in] The value to perform the cyclical shift right.

• ... – [in] The rotation value.

ztdc_has_single_bit(...)
Returns whether or not there is a single bit set in this unsigned integer value (this making it a power of 2).

Parameters
• ... – [in] The input value.

ztdc_bit_width(...)
Returns the number of bits needed to represent the value exactly.

Parameters
• ... – [in] The input value.

ztdc_bit_ceil(...)
Returns the value that is the greatest power of 2 that is less than the input value.

Parameters

1.4. API Reference 13

ztd.idk, Release 0.0.0

• ... – [in] The input value.

Returns 0 when the input value is 0. Otherwise, produces the greatest power of 2 that is less than
the input value.

ztdc_bit_floor(...)
Returns the value that is the next power of 2.

Parameters
• ... – [in] The input value.

Returns 1 when the input value is less than or equal to 1. Otherwise, produces the power of 2 that is
higher than the input value.

8-bit Memory Reverse

The 8-bit memory reverse swaps 8-bit bytes, regardless of the size of CHAR_BIT on the given platform. In order to
achieve this in a platform-agnostic manner, it requires that CHAR_BIT % 8 is 0. When CHAR_BIT is larger than 8 (16,
24, 32, 64, and other values that are multiples of 8), each 8-bit byte within an unsigned char is masked off with
0xFF << (8 * byte_index), and then serialized for storing/loading. byte_index is a value from [0, CHAR_BIT /
8) and it is swapped with the reverse 8-bit byte, which is computed with 0xFF << (8 * ((CHAR_BIT / 8) - 1 -
byte_index)).

void ztdc_memreverse8(size_t __n, unsigned char __ptr[ZTD_STATIC_PTR_EXTENT_I_(__n)])
Reverses each 8-bit byte in a region of memory.

Each 8-bit byte is considered according to 0xFF << multiple-of-8, where multiple-of-8 is a multiple of
in the range [0, CHAR_BIT).

Remark
Constraints:

• CHAR_BIT is a multiple of 8.

Parameters
• __n – [in] The number of bytes to reverse.

• __ptr – [in] The pointer whose 8-bit bytes will be reversed.

uintN_t ztdc_memreverse8uN(uintN_t __value)
Reverses the 8-bits of a given N-width integer type.

Remark
Equivalent to: ztdc_memreverse8(sizeof(__value), (unsigned char*)(&__value)); return
__value;.

Parameters __value – [in] The exact-width integer value to be reversed.

14 Chapter 1. Who Is This Library For?

ztd.idk, Release 0.0.0

8-bit Endian Load/Store

The 8-bit loads and stores put values in a format suitable for bit-by-bit transition over the network or to the filesystem.
Because it will serialize exactly enough bytes to memory so that it is suitable for transition over the network, it has
the general requirement that when it tries to load N bit integers it expects exactly N bits to be present in the array.
Therefore, CHAR_BIT % 8 must be 0 and N % 8 must be 0.

When CHAR_BIT is larger than 8 (16, 24, 32, 64, and other values that are multiples of 8), each 8-bit byte within an
unsigned char is masked off with 0xFF << (8 * byte_index), and then serialized for storing/loading.

Unsigned Variants

void ztdc_store8_leuN(uint_leastN_t __value, unsigned char __ptr[ZTD_STATIC_PTR_EXTENT_I_(N /
CHAR_BIT)])

Stores an 8-bit byte-specific unsigned integer in little endian format in the array pointed to by __ptr by reading
from __value.

Remark
Only stores N bits, as if by performing __value = __value & (UINTN_MAX) first. Each 8-bit byte is con-
sidered according to 0xFF << multiple-of-8, where multiple-of-8 is a multiple of in the range [0,
CHAR_BIT).

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Parameters
• __value – [in] The value to be stored.

• __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

void ztdc_store8_beuN(uint_leastN_t __value, unsigned char __ptr[ZTD_STATIC_PTR_EXTENT_I_(N /
CHAR_BIT)])

Stores an 8-bit byte-specific unsigned integer in big endian format in the array pointed to by __ptr by reading
from __value.

Remark
Only stores N bits, as if by performing __value = __value & (UINTN_MAX) first. Each 8-bit byte is con-
sidered according to 0xFF << multiple-of-8, where multiple-of-8 is a multiple of in the range [0,
CHAR_BIT).

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

1.4. API Reference 15

ztd.idk, Release 0.0.0

Parameters
• __value – [in] The value to be stored.

• __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

uint_leastN_t ztdc_load8_leuN(const unsigned char __ptr[ZTD_STATIC_PTR_EXTENT_I_(N / CHAR_BIT)])
Loads an 8-bit byte-specific unsigned integer in little endian format in the array pointed to by __ptr by reading
from __value.

Remark
Only loads N bits and leaves the rest at 0. Each 8-bit byte is considered according to 0xFF << multiple-of-8,
where multiple-of-8 is a multiple of in the range [0, CHAR_BIT).

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Parameters __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

uint_leastN_t ztdc_load8_beuN(const unsigned char __ptr[ZTD_STATIC_PTR_EXTENT_I_(N / CHAR_BIT)])
Loads an 8-bit byte-specific unsigned integer in big endian format in the array pointed to by __ptr by reading
from __value.

Remark
Only loads N bits and leaves the rest at 0. Each 8-bit byte is considered according to 0xFF << multiple-of-8,
where multiple-of-8 is a multiple of in the range [0, CHAR_BIT).

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Parameters __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

void ztdc_store8_aligned_leuN(uint_leastN_t __value, unsigned char
__ptr[ZTD_STATIC_PTR_EXTENT_I_(N / CHAR_BIT)])

Stores an 8-bit byte-specific unsigned integer in little endian format in the array pointed to by __ptr by reading
from __value.

Remark

16 Chapter 1. Who Is This Library For?

ztd.idk, Release 0.0.0

Only stores N bits, as if by performing __value = __value & (UINTN_MAX) first. Each 8-bit byte is con-
sidered according to 0xFF << multiple-of-8, where multiple-of-8 is a multiple of in the range [0,
CHAR_BIT).

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Precondition The input pointer __ptr has an alignment suitable to be treated as an integral type of width N.

Parameters
• __value – [in] The value to be stored.

• __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

void ztdc_store8_aligned_beuN(uint_leastN_t __value, unsigned char
__ptr[ZTD_STATIC_PTR_EXTENT_I_(N / CHAR_BIT)])

Stores an 8-bit byte-specific unsigned integer in big endian format in the array pointed to by __ptr by reading
from __value.

Remark
Only stores N bits, as if by performing __value = __value & (UINTN_MAX) first. Each 8-bit byte is con-
sidered according to 0xFF << multiple-of-8, where multiple-of-8 is a multiple of in the range [0,
CHAR_BIT).

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Precondition The input pointer __ptr has an alignment suitable to be treated as an integral type of width N.

Parameters
• __value – [in] The value to be stored.

• __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

uint_leastN_t ztdc_load8_aligned_leuN(const unsigned char __ptr[ZTD_STATIC_PTR_EXTENT_I_(N /
CHAR_BIT)])

Loads an 8-bit byte-specific unsigned integer in little endian format in the array pointed to by __ptr by reading
from __value.

Remark
Only loads N bits and leaves the rest at 0. Each 8-bit byte is considered according to 0xFF << multiple-of-8,
where multiple-of-8 is a multiple of in the range [0, CHAR_BIT).

1.4. API Reference 17

ztd.idk, Release 0.0.0

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Precondition The input pointer __ptr has an alignment suitable to be treated as an integral type of width N.

Parameters __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

uint_leastN_t ztdc_load8_aligned_beuN(const unsigned char __ptr[ZTD_STATIC_PTR_EXTENT_I_(N /
CHAR_BIT)])

Loads an 8-bit byte-specific unsigned integer in big endian format in the array pointed to by __ptr by reading
from __value.

Remark
Only loads N bits and leaves the rest at 0. Each 8-bit byte is considered according to 0xFF << multiple-of-8,
where multiple-of-8 is a multiple of in the range [0, CHAR_BIT).

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Precondition The input pointer __ptr has an alignment suitable to be treated as an integral type of width N.

Parameters __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

Signed Variants

void ztdc_store8_lesN(int_leastN_t __value, unsigned char __ptr[ZTD_STATIC_PTR_EXTENT_I_(N /
CHAR_BIT)])

Stores an 8-bit byte-specific signed integer in little endian format in the array pointed to by __ptr by reading
from __value.

Remark
Only stores (N - 1) bits, as if by performing __value = __value & (INTN_MAX) first. Each 8-bit byte is
considered according to 0xFF << multiple-of-8, where multiple-of-8 is a multiple of in the range [0,
CHAR_BIT). The sign bit is serialized into the proper location in the array as the leading (high) bit, and the mask
for that is 0x7F << multiple-of-8.

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Parameters

18 Chapter 1. Who Is This Library For?

ztd.idk, Release 0.0.0

• __value – [in] The value to be stored.

• __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

void ztdc_store8_besN(int_leastN_t __value, unsigned char __ptr[ZTD_STATIC_PTR_EXTENT_I_(N /
CHAR_BIT)])

Stores an 8-bit byte-specific signed integer in big endian format in the array pointed to by __ptr by reading from
__value.

Remark
Only stores (N - 1) bits, as if by performing __value = __value & (INTN_MAX) first. Each 8-bit byte is
considered according to 0xFF << multiple-of-8, where multiple-of-8 is a multiple of in the range [0,
CHAR_BIT). The sign bit is serialized into the proper location in the array as the leading (high) bit, and the mask
for that is 0x7F << multiple-of-8.

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Parameters
• __value – [in] The value to be stored.

• __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

int_leastN_t ztdc_load8_lesN(const unsigned char __ptr[ZTD_STATIC_PTR_EXTENT_I_(N / CHAR_BIT)])
Loads an 8-bit byte-specific signed integer in little endian format in the array pointed to by __ptr by reading
from __value.

Remark
Only stores (N - 1) bits, as if by performing __value = __value & (INTN_MAX) first. Each 8-bit byte is
considered according to 0xFF << multiple-of-8, where multiple-of-8 is a multiple of in the range [0,
CHAR_BIT). The sign bit is serialized into the proper location in the array as the leading (high) bit, and the mask
for that is 0x7F << multiple-of-8.

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Parameters __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

int_leastN_t ztdc_load8_besN(const unsigned char __ptr[ZTD_STATIC_PTR_EXTENT_I_(N / CHAR_BIT)])
Loads an 8-bit byte-specific signed integer in big endian format in the array pointed to by __ptr by reading from
__value.

1.4. API Reference 19

ztd.idk, Release 0.0.0

Remark
Only stores (N - 1) bits, as if by performing __value = __value & (INTN_MAX) first. Each 8-bit byte is
considered according to 0xFF << multiple-of-8, where multiple-of-8 is a multiple of in the range [0,
CHAR_BIT). The sign bit is serialized into the proper location in the array as the leading (high) bit, and the mask
for that is 0x7F << multiple-of-8.

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Parameters __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

void ztdc_store8_aligned_lesN(int_leastN_t __value, unsigned char
__ptr[ZTD_STATIC_PTR_EXTENT_I_(N / CHAR_BIT)])

Stores an 8-bit byte-specific signed integer in little endian format in the array pointed to by __ptr by reading
from __value.

Remark
Only stores (N - 1) bits, as if by performing __value = __value & (INTN_MAX) first. Each 8-bit byte is
considered according to 0xFF << multiple-of-8, where multiple-of-8 is a multiple of in the range [0,
CHAR_BIT). The sign bit is serialized into the proper location in the array as the leading (high) bit, and the mask
for that is 0x7F << multiple-of-8.

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Precondition The input pointer __ptr has an alignment suitable to be treated as an integral type of width N.

Parameters
• __value – [in] The value to be stored.

• __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

void ztdc_store8_aligned_besN(int_leastN_t __value, unsigned char
__ptr[ZTD_STATIC_PTR_EXTENT_I_(N / CHAR_BIT)])

Stores an 8-bit byte-specific signed integer in big endian format in the array pointed to by __ptr by reading from
__value.

Remark
Only stores (N - 1) bits, as if by performing __value = __value & (INTN_MAX) first. Each 8-bit byte is
considered according to 0xFF << multiple-of-8, where multiple-of-8 is a multiple of in the range [0,

20 Chapter 1. Who Is This Library For?

ztd.idk, Release 0.0.0

CHAR_BIT). The sign bit is serialized into the proper location in the array as the leading (high) bit, and the mask
for that is 0x7F << multiple-of-8.

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Precondition The input pointer __ptr has an alignment suitable to be treated as an integral type of width N.

Parameters
• __value – [in] The value to be stored.

• __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

int_leastN_t ztdc_load8_aligned_lesN(const unsigned char __ptr[ZTD_STATIC_PTR_EXTENT_I_(N /
CHAR_BIT)])

Loads an 8-bit byte-specific signed integer in little endian format in the array pointed to by __ptr by reading
from __value.

Remark
Only stores (N - 1) bits, as if by performing __value = __value & (INTN_MAX) first. Each 8-bit byte is
considered according to 0xFF << multiple-of-8, where multiple-of-8 is a multiple of in the range [0,
CHAR_BIT). The sign bit is serialized into the proper location in the array as the leading (high) bit, and the mask
for that is 0x7F << multiple-of-8.

Constraints
• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Precondition The input pointer __ptr has an alignment suitable to be treated as an integral type of width N.

Parameters __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

int_leastN_t ztdc_load8_aligned_besN(const unsigned char __ptr[ZTD_STATIC_PTR_EXTENT_I_(N /
CHAR_BIT)])

Loads an 8-bit byte-specific signed integer in big endian format in the array pointed to by __ptr by reading from
__value.

Remark
Only stores (N - 1) bits, as if by performing __value = __value & (INTN_MAX) first. Each 8-bit byte is
considered according to 0xFF << multiple-of-8, where multiple-of-8 is a multiple of in the range [0,
CHAR_BIT). The sign bit is serialized into the proper location in the array as the leading (high) bit, and the mask
for that is 0x7F << multiple-of-8.

Constraints

1.4. API Reference 21

ztd.idk, Release 0.0.0

• CHAR_BIT is a multiple if 8.

• N is a multiple of 8.

Precondition The input pointer __ptr has an alignment suitable to be treated as an integral type of width N.

Parameters __ptr – [in] A non-null pointer to the at least N / CHAR_BIT elements.

c_span

c_span is a type that is generated by defining the macro ZTD_IDK_C_SPAN_TYPE to a specific type name and including
the header #include <ztd/idk/c_span.g.h>. Occasionally, some types include spaces or similar, and therefore
need some additional tweaking in order to handle it all properly. This comes up to forming 3 different macros which
can help control configuration:

• ZTD_IDK_C_SPAN_TYPE, the type;

• ZTD_IDK_C_SPAN_TYPE_IS_CONST, an optional definition that, if defined, must be either 1 or 0. If 1, it indicates
that the stored pointer should be to a const T type;

• ZTD_IDK_C_SPAN_TYPE_NAME, an optional name of the type if it should not be derived directly from the type
itself (defaults to ZTD_ID_C_SPAN_TYPE);

• ZTD_IDK_C_SPAN_SIZE_TYPE, an optional type name used to control the type for the storage of the size (de-
faults to size_t).

• ZTD_IDK_C_SPAN_SIZE_TYPE_NAME, an optional suffix for the c_span‘s name to override the default which is
generated from the type (defaults to ZTD_ID_C_SPAN_SIZE_TYPE); and,

• ZTD_IDK_C_SPAN_NAME, an optional override for the entire name of the structure and its functions (ignores all
previous name-based derivations).

• ZTD_IDK_C_SPAN_SIZE_FIRST, an optional definition that, if defined, must be either 1 or 0. If 1, it indicates
that the size member should go first.

The final name is composed of either just the type name suffixed on c_span; the type name and the size type name (if
defined) suffixed onto c_span; or, the the full name provided in the override.

Important: Any macros that are consumed by this header are undefined by the end of the header, including the ones
listed above.

The <ztd/idk/c_span.h> header includes some common definitions of a c_span to be used, most notably
c_span_uchar. The documentation below is for c_span_uchar, but works for all entities.

Note: ztd_generic_type is a name used as a placeholder. When it appears as a name (or within a name) or a type,
it can be substituted out for another type name!

22 Chapter 1. Who Is This Library For?

ztd.idk, Release 0.0.0

Structure + Functions

void copy_c_span(c_span *__destination, c_span __source)
Copies on c_span into the memory of another.

Remark

Preconditions:
• __destination != NULL

Parameters
• __destination – [in] Pointer to the destination.

• __source – [in] The source span to copy.

c_span make_c_span(ztd_generic_type *__first, ztd_generic_type *__last)
Create a c_span from two pointers which denote a region of memory.

Remark

Preconditions:
• __first < __last (__first is reachable from __last).

• __first and __last are part of the same storage and form a valid range.

Parameters
• __first – [in] The start of the region of memory, inclusive.

• __last – [in] The end of the region of memory, non-inclusive.

c_span make_sized_c_span(ztd_generic_type *__first, size_t __size)
Create a c_span from two pointers which denote a region of memory.

Remark

Preconditions:
• __first and __first + __size are part of the same storage and form a valid range.

Parameters

1.4. API Reference 23

ztd.idk, Release 0.0.0

• __first – [in] The start of the region of memory, inclusive.

• __size – [in] The number of elements of the region of memory.

ztd_generic_type *c_span_data(c_span __span)
Retrieves a pointer to the start of this span of memory.

Parameters __span – [in] The “self” object.

size_t c_span_size(c_span __span)
Retrieves the size of this span of memory, in number of elements.

Parameters __span – [in] The “self” object.

bool c_span_empty(c_span __span)
Returns whether or not this span is empty.

Parameters __span – [in] The “self” object.

ztd_generic_type c_span_front(c_span __span)
Retrieves the first element of this span of elements.

Remark
Preconditions:

• __span.size > 0.

Parameters __span – [in] The “self” object.

ztd_generic_type c_span_back(c_span __span)
Retrieves the last element of this span of elements.

Remark
Preconditions:

• __span.size > 0.

ztd_generic_type c_span_at(c_span __span, size_t __index)
Retrieves the the element at the provided index.

Remark
Preconditions:

• __span.size > __index.

Parameters
• __span – [in] The “self” object.

• __index – [in] The offset into the span of elements to access.

24 Chapter 1. Who Is This Library For?

ztd.idk, Release 0.0.0

void c_span_set(c_span __span, size_t __index, ztd_generic_type __value)
Retrieves the the element at the provided index.

Remark
Preconditions:

• __span.size > __index.

Parameters
• __span – [in] The “self” object.

• __index – [in] The offset into the span of elements to access.

• __value – [in] The value to insert.

ztd_generic_type *c_span_ptr_at(c_span __span, size_t __index)
Retrieves the the element at the provided index.

Remark
Preconditions:

• __span.size > __index.

Parameters
• __span – [in] The “self” object.

• __index – [in] The offset into the span of elements to access.

ztd_generic_type *c_span_maybe_ptr_at(c_span __span, size_t __index)
Retrieves the the element at the provided index.

Remark
This function checks size so there are no preconditions.

Parameters
• __span – [in] The “self” object.

• __index – [in] The offset into the span of elements to access.

size_t c_span_byte_size(c_span __span)
Retrieves the size of this span of memory, in number of unsigned chars.

Parameters __span – [in] The “self” object.

c_span c_span_begin(c_span __span)
An iterator to the beginning of the span of elements.

1.4. API Reference 25

ztd.idk, Release 0.0.0

Parameters __span – [in] The “self” object.

ztd_generic_type *c_span_end(c_span __span)
An iterator to the end of the span of elements.

Parameters __span – [in] The “self” object.

c_span c_span_subspan(c_span __span, size_t __offset_index, size_t __size)
Creates a smaller span from this span, using the given offset into the span and the desired size.

Remark

Preconditions:
• __span.size >= (__offset_index + __size).

Parameters
• __span – [in] The “self” object.

• __offset_index – [in] The offset into the span.

• __size – [in] The size of the resulting span.

c_span c_span_subspan_at(c_span __span, size_t __offset_index)
Creates a smaller span from this span, from the given offset. The resulting size is the offset minus the __span’s
current size.

Remark

Preconditions:
• __span.size >= __offset_index.

Parameters
• __span – [in] The “self” object.

• __offset_index – [in] The offset into the span.

c_span c_span_subspan_prefix(c_span __span, size_t __size)
Creates a smaller span from this span, from the given size. The resulting offset is from 0 and has the given size.

Remark

26 Chapter 1. Who Is This Library For?

ztd.idk, Release 0.0.0

Preconditions:
• __span.size >= __size.

Parameters
• __span – [in] The “self” object.

• __size – [in] The size of the span, from the beginning.

c_span c_span_subspan_suffix(c_span __span, size_t __size)
Creates a smaller span from this span, from the given size.

Remark
The resulting offset is from the current span’s size minus the desired size, and has the given __size.

Preconditions:
• __span.size >= __size.

Parameters
• __span – [in] The “self” object.

• __size – [in] The size of the span, from the beginning.

struct c_span
#include <c_span.h> A structured pointer which keeps its size type, which represents a non-owning view into a
buffer.

This type can be initialized with designated initializers.

Remark
This type is meant to be “immutable”, which is why the members are marked const. This can present some issues
when dealing with, for example, trying to fill out members manually in structures that are heap-allocated. In-
stead, copy it using memcpy, like memcpy(my_span_ptr, &some_span, sizeof(some_span)); rather than
my_span_ptr->data = some_ptr; my_span_ptr->size = some_size;.

Defines

ZTD_IDK_C_SPAN_TYPE
The type used to create a new c_span type.

Remark

1.4. API Reference 27

ztd.idk, Release 0.0.0

This definition is required. If a type is not provided and the generation header is included, then an error will be
produced.

ZTD_IDK_C_SPAN_TYPE_NAME
The name to use when generating the function and structure names.

Remark
This definition is optional. The default is whatever ZTD_IDK_C_SPAN_TYPE is. However, that may be bad
since sometimes type names can have spaces in them (such as unsigned char). Therefore, one can se names
to make it all better, like uchar to represent unsigned char.

ZTD_IDK_C_SPAN_SIZE_TYPE
The size type used to create a new c_span type.

Remark
This definition is optional. The default is size_t. In certain cases, a more compact size type may be beneficial
than the original size_type. Some may also want to provide a signed type rather than an unsigned type. Note
that contract checks will still check for things such as > 0 or < size, even if what is provided is a signed size
type (span will not allow negative indexing, where viable).

ZTD_IDK_C_SPAN_SIZE_TYPE_NAME
The name to use when generating the function and structure names.

Remark
This definition is optional. Normally, it would be defaulted to whatever ZTD_IDK_C_SPAN_SIZE_TYPE is.
However, that may be bad since sometimes type names can have spaces in them (such as long long). Therefore,
one can se names to make it all better, like uchar to represent unsigned char.

ZTD_IDK_C_SPAN_NAME
The whole name of the generated type.

Remark
This definition is optional. When not provided, a sequence of checks are gone through to define a hope-
fully unique name for the newly generated c_span. The first generated attempt is just using c_span{type
name}{size type}, where the size type is only used if ZTD_IDK_C_SPAN_SIZE_TYPE is also defined by
you. Otherwise, it defaults to just c_span{type name} (without the brackets and with the names substituted
in).

28 Chapter 1. Who Is This Library For?

ztd.idk, Release 0.0.0

ZTD_IDK_C_SPAN_SIZE_FIRST
Whether or not the size type comes before the pointer.

Remark
This definition is optional. When not provided, the default layout is { pointer_type , size_type }. If
this is defined and its value is 1, the layout is { size_type, pointer_type }. This can aid when generating
certain types that are meant to be compatible with other kinds of buffers, e.g. with POSIX’s iovec.

char(8/16/32)_t

This makes char(8/16/32)_t available under the type definitions of ztd_char(8/16/32)_t. This allows their use
uniformly in C and C++, regardless of whether or not the type definition is present in the proper place.

typedef ZTD_CHAR8_T_I_ ztd_char8_t
An alias to a unsigned representation of an 8-bit (or greater) code unit type.

Remark
This will be a type alias for the type given in ZTD_CHAR8_T if it is defined by the user. Otherwise, it will be a
type alias for char8_t if present. If neither are available, it will alias unsigned char for the type.

typedef uint_least16_t ztd_char16_t
An alias to a unsigned representation of an 16-bit (or greater) code unit type.

Remark
Certain platforms lack the header uchar.h, and therefore sometimes this will be aliased to its standard-defined
uint_least16_t rather than just char16_t.

typedef uint_least32_t ztd_char32_t
An alias to a unsigned representation of an 32-bit (or greater) code unit type.

Remark
Certain platforms lack the header uchar.h, and therefore sometimes this will be aliased to its standard-defined
uint_least32_t rather than just char32_t.

1.4. API Reference 29

ztd.idk, Release 0.0.0

endian

The endian enumeration is a very simple enum used to communicate what kind of byte ordering certain parts of the
library should use to interpret incoming byte sequences. The C version uses macros and can be found here.

ZTDC_LITTLE_ENDIAN
Little endian, in which the least significant byte as the first byte value.

ZTDC_BIG_ENDIAN
Big endian, in which the most significant byte as the first byte value.

ZTDC_NATIVE_ENDIAN
Native endian, which is one of big, little, or some implementation-defined ordering (e.g., middle en-
dian). If it is big or little, then ZTD_NATIVE_ENDIAN == ZTD_LITTLE_ENDIAN, or ZTD_NATIVE_ENDIAN ==
ZTD_BIG_ENDIAN.

Extent

These utilities are for handling extents (arrays and pointers) in C and C++.

ZTD_PTR_EXTENT(...)
Provides the T arg[static N] functionality (“sized at least `N` large” hint).

Remark
Expands to the proper notation for C compilers, and expands to nothing for C++ compilers. It is meant to be
used as in the declaration: void f(T arg[ZTD_PTR_EXTENT(N)]);.

Parameters
• ... – [in] An expression which computes the intended size of the pointer argument.

1.5 Progress & Future Work

This is where the status and progress of the library will be kept. You can also check the Issue Tracker for specific issues
and things being worked on!

1.5.1 Containers

We should work on some spicy containers. Probably.

• fixed_vector (noexcept-throughout)

• small_vector (noexcept-throughout)

• vector (noexcept-throughout)

30 Chapter 1. Who Is This Library For?

https://github.com/soasis/idk/issues

ztd.idk, Release 0.0.0

1.5.2 Allocators

We should release some spicy allocators. Maybe wrap a few of the existing ones.

• That shiny new Linux allocator everyone was talking about early in the Pandemic

• mimalloc (eww)

• jemalloc (requires fixing their godawful build system)

1.6 Benchmarks

As benchmarks are crafted, they will be added to this repository for the relevant materials! Benchmarks are meant to
explore various scenarios, and typical are used to improve the quality of code in various places where it can matter
most or prove a point to those who are curious.

Unless it is relevant to the benchmark, we program in the most efficient way for the given benchmark for the given
tools. For example

Browse the categories of benchmarks:

1.6.1 Bit Function Benchmarks

Note: This is not an exhaustive benchmark suite, nor is it representative of all machines or architectures. All numbers
should be taken in the context of the reported environment and standard library below, as well as any additional caveats
listed.

The below benchmarks are done on a machine with the following relevant compiler and architecture details:

• Compiler: Clang 13.0.0 x86_64-pc-windows-msvc

• Standard Library: Microsoft Visual C++ Standard Library, Visual Studio 2022 (Version 17.0)

• Operating System: Windows 10 64-bit

• CPU: Intel Core i7: 8 X 2592 MHz CPUs

• CPU Caches:

– L1 Data 32 KiB (x4)

– L1 Instruction 32 KiB (x4)

– L2 Unified 256 KiB (x4)

– L3 Unified 6144 KiB (x1)

There are 4 benchmarks, and about 7 kinds of categories for each. Each one represents a way of doing work being
measured.

• naive: Writing a loop over a std::array of bool objects.

• naive_packed: Writing a loop over a std::array of std::size_t objects and using masking / OR / AND
operations to achieve the desired effect.

• ztdc_packed (this library): Writing a loop over a std::array of std::size_t objects and using bit operations
to search for the bit.

1.6. Benchmarks 31

ztd.idk, Release 0.0.0

• cpp_std_array_bool: Using the analogous std:: algorithm (such as std::find) on a std::array of bool
objects.

• cpp_std_vector_bool: Using the analogous std:: algorithm (such as std::find) on a std::vector<bool>,
or one of its custom methods to perform the desired operation.

• cpp_std_bitset: Using the analogous std:: algorithm (such as std::find) on a std::bitset<...> or one
of its custom methods to perform the desired operation.

Each individual bar on the graph includes an error bar demonstrating the standard deviation of that measurement. The
transparent circles around each bar display individual samples, so the spread can be accurately seen. Each sample
can have anything from ten thousand to a million iterations in it, and for these graphs there’s 50 samples, resulting in
anywhere from hundreds of thousands to tens of millions of iterations.

Details

As of December 5th, 2021, many standard libraries (including the one tested) use 32-bit integers for their bitset and
vector<bool> implementations. This means that, or many of these, we can beat out their implementations (even if
they employ the exact same bit manipulation operations we do) by virtue of using larger integer types.

For example, we are faster for the count operation despite Michael Schellenberger Costa optimizing MSVC’s
std::vector<bool> iterators in conjunction with its count operation, simply because we work on 64-bit integers
(and roughly, the graph shows us as twice as fast).

Note: This is a consequence of having a permanently fixed ABI for standard library types, meaning that even if
theoretically MSVC could be faster, a person can always beat out the standard library every single time if that standard
library has long-lasting ABI compatibility requirements.

There are further optimizations that can be done in quite a few algorithms when comparisons are involved. For example,
std::find can be implemented in terms of memchr for pointers to fundamental types: this is what makes the “find”
for cpp_std_array_bool so fast compared to even the bit-intrinsic-improved ztdc_packed.

Note: Therefore, despite the last note, standard libraries still perform more optimizations than what a regular user or
librarian can do! The Standard Library is not all depressing.

32 Chapter 1. Who Is This Library For?

ztd.idk, Release 0.0.0

Benchmarks

1.6. Benchmarks 33

ztd.idk, Release 0.0.0

34 Chapter 1. Who Is This Library For?

ztd.idk, Release 0.0.0

1.7 Licenses, Thanks and Attribution

ztd.idk is dual-licensed under either the Apache 2 License, or a corporate license if you bought it with special support.
See the LICENSE file or your copy of the corporate license agreement for more details!

1.7.1 Heartfelt Thanks

Thank you to the Macromancer, Jordan Rose, for suggesting the expansion of “idk” as the “Industrial Development
Kit” and Ólafur Waage for deeply encouraging “idk” as the acronym. It’s a brilliant name!

1.8 Bibliography

These are all the resources that this documentation links to, in alphabetical order.

() ‘Eeey nothin’ yet, boss!

1.7. Licenses, Thanks and Attribution 35

https://belkadan.com/blog/

ztd.idk, Release 0.0.0

36 Chapter 1. Who Is This Library For?

CHAPTER

TWO

INDICES & SEARCH

2.1 Index

37

ztd.idk, Release 0.0.0

38 Chapter 2. Indices & Search

INDEX

Symbols
¯_()_/¯, 3

C
c_span (C++ struct), 27
c_span_at (C++ function), 24
c_span_back (C++ function), 24
c_span_begin (C++ function), 25
c_span_byte_size (C++ function), 25
c_span_data (C++ function), 24
c_span_empty (C++ function), 24
c_span_end (C++ function), 26
c_span_front (C++ function), 24
c_span_maybe_ptr_at (C++ function), 25
c_span_ptr_at (C++ function), 25
c_span_set (C++ function), 25
c_span_size (C++ function), 24
c_span_subspan (C++ function), 26
c_span_subspan_at (C++ function), 26
c_span_subspan_prefix (C++ function), 26
c_span_subspan_suffix (C++ function), 27
copy_c_span (C++ function), 23

D
detected_or (C++ type), 9
detected_t (C++ type), 9
detector (C++ class), 8
detector::type (C++ type), 9
detector::value_t (C++ type), 9

E
ebco (C++ class), 5
ebco::ebco (C++ function), 5
ebco::get_value (C++ function), 6
ebco::operator= (C++ function), 5
endian (C++ type), 6

I
is_character (C++ class), 9
is_character_v (C++ member), 9
is_detected (C++ type), 9

is_detected_v (C++ member), 9
is_nothrow_tag_invocable (C++ class), 7
is_nothrow_tag_invocable_v (C++ member), 7
is_tag_invocable (C++ class), 6
is_tag_invocable_v (C++ member), 7

M
make_c_span (C++ function), 23
make_sized_c_span (C++ function), 23

N
nonesuch (C++ class), 9

T
tag_invoke_result (C++ type), 7
tag_invoke_result_t (C++ type), 7
type_identity (C++ class), 10
type_identity_t (C++ type), 10

U
uchar16_t (C++ type), 4
uchar32_t (C++ type), 4
uchar8_t (C++ type), 4
uninit (C++ class), 7
uninit::~uninit (C++ function), 7
uninit::placeholder (C++ member), 8
uninit::uninit (C++ function), 7
uninit::unwrap (C++ function), 8
uninit::value (C++ member), 8

Z
ZTD_ASSERT (C macro), 11
ZTD_ASSERT_MESSAGE (C macro), 11
ZTD_ASSUME_ALIGNED (C macro), 10
ztd_char16_t (C++ type), 29
ztd_char32_t (C++ type), 29
ztd_char8_t (C++ type), 29
ZTD_IDK_C_SPAN_NAME (C macro), 28
ZTD_IDK_C_SPAN_SIZE_FIRST (C macro), 28
ZTD_IDK_C_SPAN_SIZE_TYPE (C macro), 28
ZTD_IDK_C_SPAN_SIZE_TYPE_NAME (C macro), 28

39

ztd.idk, Release 0.0.0

ZTD_IDK_C_SPAN_TYPE (C macro), 27
ZTD_IDK_C_SPAN_TYPE_NAME (C macro), 28
ZTD_PTR_EXTENT (C macro), 30
ZTDC_BIG_ENDIAN (C macro), 30
ztdc_bit_ceil (C macro), 13
ztdc_bit_floor (C macro), 14
ztdc_bit_width (C macro), 13
ztdc_count_leading_ones (C macro), 12
ztdc_count_leading_zeros (C macro), 12
ztdc_count_ones (C macro), 11
ztdc_count_trailing_ones (C macro), 12
ztdc_count_trailing_zeros (C macro), 12
ztdc_count_zeros (C macro), 11
ztdc_first_leading_one (C macro), 12
ztdc_first_leading_zero (C macro), 12
ztdc_first_trailing_one (C macro), 13
ztdc_first_trailing_zero (C macro), 12
ztdc_has_single_bit (C macro), 13
ZTDC_LITTLE_ENDIAN (C macro), 30
ztdc_load8_aligned_besN (C++ function), 21
ztdc_load8_aligned_beuN (C++ function), 18
ztdc_load8_aligned_lesN (C++ function), 21
ztdc_load8_aligned_leuN (C++ function), 17
ztdc_load8_besN (C++ function), 19
ztdc_load8_beuN (C++ function), 16
ztdc_load8_lesN (C++ function), 19
ztdc_load8_leuN (C++ function), 16
ztdc_memreverse8 (C++ function), 14
ztdc_memreverse8uN (C++ function), 14
ZTDC_NATIVE_ENDIAN (C macro), 30
ztdc_rotate_left (C macro), 13
ztdc_rotate_right (C macro), 13
ztdc_store8_aligned_besN (C++ function), 20
ztdc_store8_aligned_beuN (C++ function), 17
ztdc_store8_aligned_lesN (C++ function), 20
ztdc_store8_aligned_leuN (C++ function), 16
ztdc_store8_besN (C++ function), 19
ztdc_store8_beuN (C++ function), 15
ztdc_store8_lesN (C++ function), 18
ztdc_store8_leuN (C++ function), 15

40 Index

	Who Is This Library For?
	Users in the Wild
	Glossary of Terms & Definitions
	🔨 Configuring the Library
	API Reference
	C++ APIs
	Alignment
	assertions
	char(8/16/32)_t
	ebco
	endian
	span
	tag_invoke
	uninit
	unwrap / unwrap_iterator
	detection
	is_character
	type_identity

	C APIs
	Alignment
	Assertions
	Bit Intrinsics
	8-bit Memory Reverse
	8-bit Endian Load/Store
	Unsigned Variants
	Signed Variants

	c_span
	Structure + Functions
	Defines

	char(8/16/32)_t
	endian
	Extent

	Progress & Future Work
	Containers
	Allocators

	Benchmarks
	Bit Function Benchmarks
	Details
	Benchmarks

	Licenses, Thanks and Attribution
	Heartfelt Thanks

	Bibliography

	Indices & Search
	Index

	Index

